IP адрес протокола IPv4 состоит из 32 бит, но не все биты в адресе имеют одинаковое значение. Биты делятся на две части: слева некоторое количество бит обозначают сеть, к которой относится данный адрес, оставшиеся биты справа идентифицируют устройство внутри сети. Подробнее об этом можно прочесть в статье про IPv4-адресацию. Граница между этими двумя группами бит может проходить в разных местах, например, для 32-битного адреса, первые 16 бит могут обозначать сеть, вторые – хост внутри сети, возможны любые другие сочетания (10 и 22, 8 и 24, 30 и 2) – в принципе, любые два числа, дающие в сумме 32 подойдут.

Для описания того, где проходит эта граница используется сетевой префикс. Он записывается обычно после адреса в виде десятичного числа через слеш, например 10.0.0.0/8 или 192.168.10.123/19 (8 и 19 – префиксы). Префикс обозначает, сколько бит в приведённом адресе хранят информацию о сети. Например, если префикс /24, это означает, что в адресе из 32-х бит 24 бита хранят информацию о сети, а оставшиеся 8 – информацию о хосте.

Предположим, что имеется такая задача: найти широковещательный адрес для адреса 172.20.35.123/20. Запишем адрес в двоичном виде 10101100.00010100.00100011.01111011, как мы помним из определения, чтобы получить широковещательный адрес, надо взять ту часть адреса, где хранится информация о хосте и заполнить её единицами. Так как префикс 20 – отсчитываем первые 20 бит и оставляем их без изменений (виде 10101100.00010100.0010), оставшиеся 12 бит заполняем единицами, так как там хранится хостовая часть адреса (1111.11111111), получится адрес 10101100.00010100.00101111.11111111, в десятичной системе это выглядит как 172.20.47.255.

Перевод префикса в маску подсети

Префикс и маска подсети обозначают одно и то же, только разными способами. Если надо найти маску подсети по префиксу, то надо просто написать столько единиц, сколько указано в префиксе, оставшуюся часть дополнить нулями (чтобы всего получилось 32 двоичные цифры) и дальше группами по 8 бит перевести в десятичную систему.

Например, стоит задача найти маску, соответствующую префиксу /19. Для этого запишем 19 единиц и дополним их 13 нулями, чтобы всего получилось 32 цифры:

11111111.11111111.11100000.00000000, то что получилось надо перевести в десятичный вид и получим маску подсети 255.255.224.0.

Сетевой префикс в IPv6

В IPv6 адрес состоит из 128 бит, и маски подсети не используются, так как пришлось бы иметь очень длинные маски — тоже по 128 бит. Вместо этого используется только префикс. Смысл префикса в IPv6 такой же как и для IPv4 — отделение части адреса, хранящей информацию о сети от части адреса, хранящей информацию о хосте. Правая часть, хранящая информацию о хосте имеет специальное название — «Идентификатор интерфейса» (Interface ID). В IPv6 клиенту выделяются сети с префиксом /64, что означает ещё 64 бита на хосты внутри сети. Таким образом, внутри сети моэет существовать 2 64 различных хостов.

Длина префикса сети в маске подсети

Поскольку биты идентификатора сети всегда идут последовательно и начинаются с са­мого левого, самый простой способ показать маску подсети — это указать количество битов идентификатора сети в виде префикса сети. Таким образом, маска подсети выра­жается в виде «IP-адрес/префикс сети». Например, IP-адрес I31.107.16.200 и маску под­сети 255.255.0.0 можно записать в виде 131.107.16.200/16. Число 16 после слеша обозна­чает количество единичных битов в маске подсети. Точно так же, /24 обозначает маску подсети 255.255.255.0 для адреса класса С, например 206.73.118.23/24.

Примечание Нотация с префиксом сети также известна как бесклассовая междоменная маршрутизация (Classless Interdomain Routing, C1DR).

Основной шлюз

Связь между TCP/IP-узлами разных сетей как правило выполняется через маршрутиза­торы. Маршрутизатор — это устройство с несколькими интерфейсами, подключенны­ми к разным сетям, а маршрутизация — процесс приема IP-пакетов на одном интерфей­се и пересылка их на другой интерфейс в направлении адресата. С точки зрения узлг сети TCP/IP, основной шлюз— это IP-адрес маршрутизатора, сконфигурированного не пересылку IP-трафика в другие сети.

Пытаясь передать информацию другому узлу IP-сети, компьютер определяет тип узла (локальный или удаленный) по маске подсети. Если узел-получатель располо­жен в локальном сегменте сети, пакет направляется в локальную сеть по методу ши­роковещания. В противном случае компьютер пересылает пакет в основной шлюз, определенный в параметрах TCP/IP. Обязанность дальнейшей пересылки пакета е нужную сеть возлагается на маршрутизатор, адрес которого указан в качестве основ­ного шлюза.

7.5. Разбиение на подсети

Очень редко в локальную вычислительную сеть входит более 100-200 узлов: даже если взять сеть с бльшим количеством узлов, многие сетевые среды накладывают ограничения, например, в 1024 узла. Исходя из этого, целесообразность использования сетей класса А и В весьма сомнительна. Да и использование класса С для сетей, состоящих из 20-30 узлов, тоже является расточительством.

Для решения этих проблем в двухуровневую иерархию IP-адресов (сеть — узел) была введена новая составляющая — подсеть. Идея заключается в «заимствовании» нескольких битов из узловой части адреса для определения подсети.

Полный префикс сети, состоящий из сетевого префикса и номера подсети, получил название расширенного сетевого префикса. Двоичное число, и его десятичный эквивалент, содержащее единицы в разрядах, относящихся к расширенному сетевому префиксу, а в остальных разрядах — нули, назвали маской подсети.

Маски подсети помогают определить, как IP-адрес разбивается на идентификаторы сети и узла. В адресах классов А, В и С применяются стандартные маски подсети, занимаю­щие соответственно первые 8, 6 и 24 бита 32-битового адреса. Подсетью называется логическая сеть, определяемая маской подсети.

Стандартные маски годятся для сетей, которые не предполагается разбивать. Напри­мер, в сети из 100 компьютеров, соединенных с помощью карт гигабитного Ethernet, кабелей и коммутаторов, все узлы могут обмениваться информацией по локальной сети. Сеть не нуждается в маршрутизаторах для защиты от чрезмерного широковещания или для связи с узлами, расположенными в отдельных физических сегментах. В таком про­стом случае вполне достаточно идентификатора сети класса С.

7.6. Механизм разбиения на подсети

Разбиение на подсети (subnetting) — это логическое разделение адресного пространства сети путем установки в 1 дополнительных битов маски подсети. Такое расширение по­зволяет создавать многие подсети в адресном пространстве сети.

Например, если маска подсети по умолчанию 255.255.0.0 используется для узлов сети класса В 131.107.0.0, IP-адреса 131.107.1.11 и 131.107.2.11 находятся водной подсети и поддерживают взаимодействие посредством широковещания. Но если расширить маску подсети до 255255255.0, то эти адреса окажутся в разных подсетях и для обмена данны­ми соответствующим узлам придется пересылать пакеты на основной шлюз, который перенаправит дейтаграммы в нужную подсеть. Внешние по отношению к сети узлы по-прежнему используют маску подсети по умолчанию для взаимодействия с узлами внут­ри сети. Обе версии показаны на рис. 2-7 и 2-8.

Рис. 2-7. Не разбитое на подсети адресное пространство класса В

Показанное на рис. 2-7 исходное адресное пространство класса В, состоящее из един­ственной подсети, может содержать максимум 65 534 узлов, а новая маска подсети (рис. 2-8) позволяет разделить адресное пространство на 256 подсетей, в каждой из ко­торых можно разместить до 254 узлов.

7.6.1. Преимущества разбиения на подсети

Рис. 2-8. Разбитое на подсети адресное пространство класса В

Соответствие физической топологии.Допустим, вам поручили спроектировать уни­верситетскую сеть, состоящую из 200 узлов, распределенных в четырех зданиях — Voter Hall, Twilight Hall, Monroe Hall и Sunderland Hall. В каждом здании планируется разме­стить по 50 узлов. Если интернет-провайдер выделил адрес 208.147.66.0 класса С, вам доступны адреса 208.147.66—208.147.66.254. Однако из-за размещения в четырех физи­чески отделенных зданиях, узлы не могут обмениваться данными по локальной сети. Расширив маску подсети на 2 бита (т. е. позаимствовав их у идентификатора узла), сеть» разбивают на четыре логические подсети, а для связи устанавливается маршрутизатор (рис. 2-9).

Ограничениешироковешательного трафика. Широковещание — рассылка сообще­ний с одного компьютера на все расположенные в локальном сегменте устройства. Широковещание существенно нагружает ресурсы, поскольку занимает полосу про­пускания и требует участия всех сетевых адаптеров и процессоров логического сегмен­та сети.

Маршрутизаторы блокируют широковещание и защищают сети от излишнего тра­фика. 11оскольку маршрутизаторы также определяют логические ограничения подсетей, разбиение на подсети позволяет косвенно ограничивать широковещательный трафик в сети.

7.6.2. Определение максимального количества узлов в сети

Зная сетевой адрес, определить максимальное количество узлов в сети просто: надо воз­вести 2 в степень, равную количеству битов в идентификаторе узла и вычесть 2. Напри­мер, в сетевом адресе 192.168.0.0/24 под идентификатор узла отведено 8 бит, поэтому возможное максимальное число узлов 2 5 — 2 = 254.

Количество узлов в подсети.Количество идентификаторов узлов в подсети опре­деляется также, как и узлов в сети — оно равно Т — 2, где х — количество бит в иден­тификаторе узла. Например, в адресе 172.16.0.0/24 резервируется 8 бит под иденти­фикатор узла, поэтому число узлов в подсети равно 2 — 2, т. е. 254. Дня вычисления количества узлов во всей сети умножают полученный результат на количество под­сетей. В нашем примере адресное пространство 172.16.0.0/24 даст 254 сетей х 256 узлов = 65 024.

Конфигурируя адресное пространство и маски подсети в соответствии с требовани­ями сети убедитесь, что отвели на идентификатор узла достаточно бит с учетом возмож­ного увеличения количества узлов в подсети в будущем.

7.6.3. Определение диапазонов адресов подсети

Десятично-точечная форма маски подсети позволяет определить диапазоны IP-адресов в каждой подсети простым вычитанием из 256 числа в соответствующем октете маски. Например, в сети класса С с адресом 207.209.68.0 с маской подсети 255.255.255.192 вы­читание 192 из 256 даст 64. Таким образом, новый диапазон начинается после каждого 64 адреса: 207.209.68.0-207.209.68.63, 207.209.68.64-207.209.68.127 и т.д. В сети клас­са В 131.107.0.0 с маской подсети 255.255.240.0 вычитание 240 из 256 дает 16. Следова­тельно, диапазоны адресов подсетей группируются по 16 в третьем октете, а четвертый октет принимает значения из диапазона 0—255: 131.107.0.0—131.107.15.255, 131.107.16.0— 131.107.31.255 и т.д.

Помните, что узлам нельзя назначать идентификаторы из одних нулей или единиц, так что исключаются первый и последний адрес каждого диапазона.

7.7. Проблемы классической схемы

В середине 80-х годов Internet впервые столкнулся с проблемой переполнения таблиц магистральных маршрутизаторов. Решение, однако, было быстро найдено — подсети устранили проблему на несколько лет. Но уже в начале 90-х к проблеме большого количества маршрутов прибавилась нехватка адресного пространства. Ограничение в 4 миллиарда адресов, заложенное в протокол и казавшееся недосягаемой величиной, стало весьма ощутимым.

В качестве решения проблемы были одновременно предложены два подхода — один на ближайшее будущее, другой комплексный и долгосрочный. Первое решение — это внедрение протокола бесклассовой маршрутизации (CIDR), к которому позже присоединилась система NAT.

Долгосрочное решение — это протокол IP следующей версии. Он обозначается, как IPv6, или IPng (Internet Protocol next generation). В этой реализации протокола длина адреса увеличена до 16-ти байтов (128 бит!), исключены некоторые элементы действующего протокола, которые оказались неиспользуемыми.

7.7.1. Маска подсети переменной длины VLSM
(Variable Length Subnet Mask)

Традиционно все узлы и маршрутизаторы организации используют одну маску подсети. В этом случае сеть может разбиваться на подсети, в которых максимальное количество идентификаторов узлов одинаковое.

Однако поддержка масок подсети переменной длины (variable-length subnet mask, VLSM) позволяет маршрутизаторам обслуживать разные маски. Чаше всего VLSM применяют для разбиения на подсети самих подсетей.

Общая схема разбиения сети на подсети с масками переменной длины такова: сеть делится на подсети максимально необходимого размера. Затем некоторые подсети делятся на более мелкие, и рекурсивно далее, до тех пор, пока это необходимо.

Кроме того, технология VLSM, путем скрытия части подсетей, позволяет уменьшить объем данных, передаваемых маршрутизаторами. Так, если сеть 12/8 конфигурируется с расширенным сетевым префиксом /16, после чего сети 12.1/16 и 12.2/16 разбиваются на подсети /20, то маршрутизатору в сети 12.1 незачем знать о подсетях 12.2 с префиксом /20, ему достаточно знать маршрут на сеть 12.1/16.

Табл. 2-5. Параметры маски подсети класса С (статические)

Маска сети (255.255.255.0): определение, длина префикса подсети, количество адресов и обратная маска

Всем доброго времени суток! Из-за обилия чуши в интернете по данной тематике я решил написать собственную подробную и интересную статью, которая наконец-то раскроет вопрос: а что же такое маска подсети, для чего она нужна и где её принимать. Статья подойдёт как для чайников, так и для начинающих специалистов.

IP и маска

Начнем, наверное, с самого начала, а именно с разбора IP 4-ой версии. IPv4 – применяется повсеместно почти во всех сетевых устройствах. Данный параметр нужен для адресации пакетов, а также для обозначения сетевого устройства. Всё аналогично, как на почте – без адреса почтальон не будет знать, куда отправлять информацию.

IPv4 состоит из 32 бита – например, 192.168.28.32. Каждая цифра кодируется в 8 битах и поэтому имеет максимальное число вариантов – 255. В итоге у нас получается диапазон от 0.0.0.0 до 255.255.255.255. Помимо IPv4, есть также и IPv6, который имеет бОльшую длину адреса – 128 бит.

Один бит может принимать вид нуля и единицы – именно эту информацию может понимать компьютер, современный смартфон, телевизор и другие устройства. А так как у нас этих битов 32, то суммарное количество адресов IPv4, которые могут существовать: 2 32 = 4 294 967 296.

ПРИМЕЧАНИЕ! Достаточно много «АйПи» зарезервированы под какие-то нужды. К таким адресам относят: 255.255.255.255, 0.0.0.0, 0.0.0.1 и т.д.

Итак, у нас есть 4 байтовый или 32 битовый адрес. Чаще всего один кусок адреса называют именно байтом, или так называемыми «октетом». Октет – это 1 байт адреса IPv4. Для удобства представления разделяются точками – так проще воспринимается информация.

Таблица масок

Дома в домашних роутерах чаще всего используют 255.255.255.0 или 24я маска. Также часто используют:

  • 29 – 255.255.255.248
  • 30 – 255.255.255.252
  • 27 – 255.255.255.224
  • 26 – 255.255.255.192
  • 32 – 255.255.255.255 (имеет только один узел)
  • 23 – 255.255.254.0

Как определить маску подсети? Тут все зависит от потребности сети, а также от количества подсетей. Для шпаргалки можете сохранить верхнюю таблицу. Маску определяет системный администратор или инженер.

Передача данных

Как вы, наверное, знаете – информация в сети передается пакетами, примерно также как на почте. В пакете также есть и заголовок, где прописаны два адреса:

  • Source IP – от кого отсылается пакет.
  • Destination IP – к кому отсылать пакет.

Никакой маски в передаваемой информации нет, также сам адрес представлен в чистом виде без точек, запятых и без каких-либо разделителей – «голые» 4 байта. И тут сразу встает вопрос – а для чего тогда вообще нужна маска подсети, и где её применяют? – Вот мы и подошли к самой сути. В пакете информации маски нет. Так как она тут просто не нужна. Но вот при присвоении адреса какому-то устройству: будь это компьютер, смартфон, телевизор, сервер – каждому устройству также приписывается маска подсети.

Маска подсети (Mask) – позволяет понять компьютеру или другому сетевому устройству, в какой границе он находится по отношению к другим устройствам. Чтобы он понимал – что те или иные устройства находятся в одной с компьютером сети или нет. Если говорить вообще сельским языком: «С нашего двора или нет?!».

Для чего это вообще нужно? А нужно это для того, чтобы можно было отправлять пакеты информации напрямую. Например, если вы живете в одном городе с другом, то вам проще и быстрее сходить к нему в гости и передать что-то лично в руки. Но если друг живет за пределом города, то проще уже отправить посылку с помощью почты.

Аналогично все происходит в сети. Если устройство находится в пределах одной подсети (можно говорить и просто «сети»), то отправка идет напрямую. Если же устройство находится где-то там, то пакет отправляется через шлюз.

Теперь давайте посмотрим, какой же вид имеет маска сети. Самое главное правило, что при переводе в двоичный код (1 и 0), мы можем видеть строгое разделение единиц (1) и нулей (0).

255.255.248.0 = 11111111.11111111.11111000.00000000

То есть, идут сначала единицы, а потом нули. Не может быть такого, что 1 и 0 постоянно меняются и чередуются: «101010001». При этом идет определенное число единиц (1), а уже потом какое-то число нулей (0). Вот как раз число нулей и является длиной маски. Компьютер определяет границу, достаточно просто. Он переводим IP и маску в двоичный код и просто побитово перемножает два этих числа.

ПРИМЕЧАНИЕ! Всё как в математике 1*1 = 1, 0*1 = 0 и 0*0=0.

11000000.10101000.00001011.00001010 (192.168.11.10)
11111111.11111111.11111000.00000000 (255.255.248.0)
=
11000000.10101000.00001000.00000000 = 192.168.8.0

СОВЕТ! Если вы начинающий системный администратор или IT инженер, то вы должны знать – как переводятся десятичные, шестнадцатеричные числа в двоичные и обратно.

В итоге мы получаем адрес подсети – 192.168.8.0. Есть ещё одно понятие – «направленный броадкаст». Его можно получить, если перевести последние используемые байты в биты, а потом нули заменить на единицы, а единицы на нули. Тогда у нас получится число 192.168.15.255.

ВНИМАНИЕ! Оба этих адреса нельзя использовать в сети.

В итоге у нас получается диапазон от 192.168.8.1 до 192.168.15.254. Можно также записать более коротко как 192.168.8.0/21. В итоге все начальные единицы – это адрес или префикс сети (192.168.х.х). Длина префикса – это начальное количество единиц и нулей до последних сплошных нулей. А все нули, которые идут в самом конце – это идентификатор хоста внутри сети.

В итоге компьютер отсылает пакет второму устройству. Если второе устройство находится в той же подсети, то отправка идет напрямую. Если же второй аппарат находится в другой сети, то пакет отправляется маршрутизатору, который чаще всего выступает шлюзом. Обычно первый сегмент сети и является шлюзом. В нашем случае – это 192.168.8.1.

ПРИМЕЧАНИЕ! При отправке пакетов напрямую, шлюз не может контролировать их. В некоторых организациях для контроля отправки пакетов сети разбивают на несколько сетей, а между ними устанавливают маршрутизаторы, через которые и идут пакеты. Их ещё часто называют «файрволами».

Давайте расскажу на примере обычного Wi-Fi роутера и локальной домашней сети. Дома стоит маршрутизатор, к которому подключены: компьютер, ноутбук, смартфон и телевизор. Роутер раздает настройки сети и присваивает им свои IP и маску. Как я и говорил ранее, чаще всего используется: 255.255.255.0.

Если компьютер отправит пакет напрямую одному из локальных устройств, то пакет отправится сразу к адресату. Но если в пакете будет указан IP, который не находится в этой сети, то он поступит сначала к шлюзу, а именно к роутеру, а он, в свою очередь, отправит его дальше в интернет сеть.

В больших организациях всё куда сложнее, так как между сетями может быть достаточно много шлюзов, хостов, а также других важных устройств. Именно поэтому IT инженеру нужно заранее просчитывать все возможные варианты резервации IP для каждого сетевого устройства.

Что такое префикс сети, и как он помогает расшифровать IP-адрес

Вступление

Каждое устройство, подключённое к интернету, требует цифровой идентификатор. IP-адрес является цифровым кодом, используемым для определения различного оборудования, подключённого к Всемирной паутине. На сегодняшний день существует две версии IP: IPv4 и IPv6. Протокол версии 4 является все ещё основным, но количество доступных ресурсов исчерпалось, поэтому постепенно начинает использоваться 6 версия, позволяющая использовать гораздо большее количество ресурсов. Каждый идентификатор содержит информацию о конкретном соединении, а также о подключённом оборудовании. Префикс указывает, какие значения используются для обозначения сети, а какие — для обозначения устройства. Давайте детальнее рассмотрим, что такое сетевой префикс, и как он поможет расшифровать IP-адрес.

Любое устройство гарантированно получает свой уникальный идентификатор

Структура IP-адреса

Обычно IP-адрес записывается следующим образом: 192.168.10.100. Каждая секция представляет собой 8 бит или 1 байт информации. Сервер видит эти цифры как набор единиц и нулей, для нашего удобства они записываются в обычной десятичной системе. Максимальная её длина — 3 знака, а минимальная — 1. Суммарно вся запись занимает 32 бита и теоретически может быть 232 или 4.294.967.296 ресурсов.

Весь цифровой код делится на две части: адрес провайдера и хост. Первый из них определяет провайдера, через который вы работаете, а второй обозначает идентификатор конкретного устройства, как, например, ноутбук или планшет Андроид, в локальном подключении. Для того чтобы узнать, сколько бит обозначает каждый из показателей, записывается префикс сети через слеш. Тогда запись выглядит как 192.168.10.100/24. В нашем случае 24 обозначает, что первых 3 секции (3*8=24), а именно 192.168.10 является адресом соединения. Оставшиеся 8 бит, а именно 100 — это идентификатор оборудования (максимум 28 = 256 адресов). При 192.168.10.100/16 локальный ресурс будет 192.168, а хост — 10.100 (216 = 65536).

Часто для определения адреса используется маска подсети. Её длина не отличается. Это, по сути, то же самое, что и префикс сети, только немножко по-другому организовано. Вы, наверное, обращали внимание, что провайдер указывает этот параметр при подключении к интернету. Она также показывает, какая часть IP относится к провайдеру, а какая — к хосту. Она записывается также в виде четырёх 8-битных секций. Единственное отличие, что в двоичном исчислении сначала должны идти только единицы. Если перевести двоичные 11111111 в десятичное исчисление, получится 255. Поэтому маска обязательно будет начинаться с 255.

Рассмотрим пример. Возьмём наш адрес 192.168.10.100 и маску 255.255.255.0. Соответственно, первых три раздела записи будут идентификатором LAN, а последняя — идентификатором компьютера. Если маска — 255.255.0.0, то сеть будет 192.168, а хост — 10.100.

Также маска лучше поможет определить, относятся ли два IP-ресурса к одному подключению. Возьмём, к примеру, 213.111.125.17 и 213.111.176.3. Если маска — 255.255.0.0, то оба адреса расположены в одной сети, если она 255.255.255.0, то в разной, так как 125 и 176 отличаются.

Префикс сети позволит определить её подмаску. Например, у нас есть запись 176.172.7.132/22. Как мы помним, 22 показывает количество бит, отвечающие за провайдера. В двоичной системе на самом начале запишем 22 единицы и дополним их 10 нулями, чтобы суммарно получилось 32 бита, и разделим точками секции по 8 бит — 11111111.11111111.11111100.00000000. Теперь переведём результат в десятичное исчисление, итоговым результатом у нас получится 255.255.252.0.

Для обратного расчёта возьмём адрес 176.172.7.132 и маску 255.255.128.0. Переводим её в двоичную систему, получим 11111111.11111111.10000000.00000000. Единиц в нашем случае 17, это и есть наш префикс сети. В десятичном виде запишем его как 255.255.128.0/17.

Заключение

После прочтения статьи вас не будут пугать длина цифровых записей при настройке подключения и термины «префикс сети» и другие. Если вы обычный пользователь системы Андроид, информации из статьи вам будет вполне достаточно. Если вы хотите вручную настроить домашнее подключение, возможно, придётся провести более глубокое исследование.

Считаете ли вы этот материал полезным? Будем благодарны за оставленные комментарии.

Волчье логово / Ulvens Lair / Wolfshöhle / Wolfs Lair

Шпаргалки и заметки о сетевых технологиях, серверах, СХД, IT в принципе. И о разном другом) Чтоб самому не забывать, и другим помочь.

воскресенье, 8 декабря 2013 г.

CCNA/CCNP — Адресация IPv4: правила деления на подсети

О ЧЕМ ЗДЕСЬ НЕ РАССКАЖУТ

Начну с того, что не буду рассказывать про двоичное счисление, Булеву алгебру, о том, как переводить из двоичной системы в десятичную и наоборот. Знание вышеназванных тем — основное требование для прочтения данной статьи. Если есть сложности в такого рода вычислениях, рекомендую обратиться к сторонним учебным пособиям и ресурсам. В крайнем случае статьи на ресурсе, не заслуживающем доверия, вполне хватит: Википедия о двоичном счислении.

ЧТО ТАКОЕ IP АДРЕС?

ЧТО ТАКОЕ МАСКА СЕТИ И ДЛИНА ПРЕФИКСА?

В качестве указателя используется маска подсети — комбинация битов равная по длине IP адресу, которая указывает, где в IP адресе сетевая, а где хостовая часть.
Маска записывается в виде последовательности из единиц и нулей, причем сначала подряд идут единицы (указание на сетевую часть), а потом идет последовательность нулей (хостовая часть).

Например:
В двоичном виде: 11111111111111111111111100000000
То же самое в десятичном виде: 255.255.255.0
Такая маска говорит о том, что первые три октета отвечают за сетевой адрес, а последний, 4й октет указывает на номер хоста в сети.

Маска используется следующим образом: возьмем наш адрес и произведем побитовое умножение элементов адреса с элементами маски (помним, что 1х1=1, а 1х0=0).

Теперь мы видим, что:
1 — адрес сети («улица») — 173.5.82.0
2 — адреса хостов («дома») могут лежать в диапазоне от 173.5.82.1 до 173.5.82.254
3 — широковещательный адрес — это последний адрес в сети, у которого все биты в хостовой части равны единице — 173.5.82.255.

NB! Часто задаваемый вопрос: Можно ли использовать «рваную маску» (маска, в указателе на сетевую часть которой присутствует нуль)? Например, такую: 254.255.255.0 — НЕТ, в общем случае НЕЛЬЗЯ , хотя есть исключения.

Подробнее о масках можно почитать в RFC1519.

Еще один способ указания на то, какая часть является адресом сети, а какая является адресом хоста — это использование префиксов (RFC4632).
Запись в этом случае будет выглядеть следующим образом: 173.5.82.12/24, где через косую черту указывается длина префикса — количество бит, начиная с самого старшего, первого бита, которые отведены под адрес подсети.
Префикс — это адрес сети, в нашем случае — 173.5.82.0.

Маска/длина префикса может быть различна. От чего это зависит? От того, какое количество хостов нам необходимо обеспечить адресами. Изначально использовали только три маски, разбив адресное пространство на три основных класса: А, B, С.

По указанным маскам можно вычислить, какое количество хостовых адресов мы можем получить. К примеру, сеть класса А имеет 24 бита, отведенные под хостовые адреса. При этом помним, что адрес, у которого на месте хостовых битов только нули — это адрес сети, а если там все единицы — то это широковещательный адрес. Оба этих адреса нельзя назначить хосту, поэтому вычитаем их из общего количества хостовых адресов. В итоге:

Класс А позволяет назначить адреса 2^24-2=16777214 хостам, сеть класса B содержит 2^16-2=65534 хостовых адреса, а сеть класса С имеет 2^8-2=254 хостовых адреса.

VARIABLE LENGTH SUBNET MASKS (VLSM) или БЕСКЛАССОВАЯ АДРЕСАЦИЯ

Чтобы вычислить количество хостовых адресов, необходимо воспользоваться формулой 2^N-2, где N — количество хостовых битов в данной подсети.
В современных сетях существуют ситуации, когда есть необходимость только в двух адресах между устройствами. Возьмем самую маленькую сеть класса С. Для строящейся сети типа «точка-точка» мы взяли только 2 адреса из сети класса С. Остальные адреса (а их осталось 252) мы использовать не можем, они просто есть на указанном участке сети типа «точка-точка». Было бы удобнее, если бы мы могли выдать то количество адресов на подсеть, которое необходимо. И не выбрасывали на ветер остальные адреса. Так появилась бесклассовая адресация или VLSM. Суть её заключается в том, что мы можем выдать на подсеть ровно столько адресов, сколько нужно (ну почти), а оставшееся адресное пространство использовать где-нибудь еще.
Проще всего объяснить на примере:

Дана сеть 192.168.0.0/24 (или маска 255.255.255.0). Сеть класса С, 254 адреса. Мы можем забрать один бит от сетевой части и отдать под адреса хостов. Тогда:

192.168.0.0/24 превратится в 192.168.0.0/23 (маска 255.255.254.0) Количество хостов:
2^9-2=510 — именно столько адресов мы можем выдать конечным устройствам.

Адрес сети: 192.168.0.0
Диапазон хостовых адресов: 192.168.0.1 — 192.168.1.254
Широковещательный адрес: 192.168.1.255

Обращаем внимание на третий и четвертый октеты:

Возьмем другой пример. Пусть дана сеть 172.16.20.0/22. Определить маску, количество и диапазон хостовых адресов и широковещательный адрес.

/22 — 22 бита отвечают за хостовый адрес. Узнать маску можно написав сначала 22 единицы, добить это до 32 бит нулями, после чего разделить на 4 октета и перевести в десятичную форму. не вдаваясь в подробности вычислений, получаем: 255.255.252.0

Количество хостовых адресов мы можем определить по формуле, указанной выше. Число хостовых бит равно 10 (длина адреса — длина префикса: 32-22=10). Следовательно, количество хостовых адресов равно 1022 (за вычетом широковещательного и сетевого адресов).

Широковещательный адрес — адрес, у которого в хостовой части все биты имеют значение единицы. Для наглядности посмотрим на рисунок с изображением 3го и 4го октетов:

И адрес имеет вид 172.16.23.255.
Диапазон хостовых адресов: 172.16.20.1 — 172.16.23.254

А что, если вместо одной большой сети у нас есть много маленьких? Как обеспечить такую сеть адресами? Для этого и придумали деление на подсети (не знаю, как лучше перевести понятие subnetting).
Допустим, у нас есть адресное пространство — сеть класса С: 192.168.35.0/24. И есть две физические сети, в которых по 120 машин. Нам необходимо разделить это адресное пространство так, чтобы каждой физической сетке досталось адресов ровно столько, сколько нужно, или хотя бы с минимальным количеством лишних, неиспользованных адресов.

Для начала ответим на вопрос, сколько хостовых битов должно быть в наших подсетях? Попробуем взять 7 бит: 2^7-2=126 адресов. Если возьмем 6, то количество хостовых адресов в подсети будет уже равно 62, что не достаточно для наших целей. Итак, нам нужно 7 хостовых битов. Следовательно, мы можем передвинуть границу сети класса C вправо, забрав один бит из хостовой области в сетевую. Этим битом мы можем управлять, как нам захочется. Ну. Вариантов-то не много, а точнее — два: либо он будет равен 0, либо 1. Отсюда мы получаем две сети:

Первая сеть: 192.168.35.0/25
Диапазон адресов: 192.168.35.1 — 192.168.35.126
Широковещательный адрес: 192.168.35.127
Вторая сеть: 192.168.35.128/25
Диапазон адресов: 192.168.35.129 — 192.168.35.254
Широковещательный адрес: 192.168.35.255
Итог: у нас есть две сети, отвечающие нашим нуждам, которые к тому же имеют по 6 дополнительных адресов про запас.

Допустим, концепция резко изменилась, и нам потребовалось срочно вместо одной сети со 120 хостами получить 3 сети по 20 хостов. Возьмем полученную в предыдущем случае сеть 192.168.35.0/25 и разделим её так же, как поступали ранее с большой сетью

Необходимое количество хостовых бит, обеспечивающих наши потребности, равно 5 (2^5-2=30 хостовых адресов). Меньше не получится (4 бита дают лишь 14 хостовых адреса). Поэтому сдвигаем на два бита вправо границу между сетевой и хостовой частью: длина префикса становится равной /27. Посмотрим, какие сети у нас получились:

Зеленым выделены биты, которые мы можем менять. У нас получилось 4 дополнительные сети, в каждой имеется по 30 сетевых адресов.

Первая сеть: 192.168.35.0/27
Диапазон адресов: 192.168.35.1 — 192.168.35.30
Широковещательный адрес: 192.168.35.31
Вторая сеть: 192.168.35.32/27
Диапазон адресов: 192.168.35.33 — 192.168.35.62
Широковещательный адрес: 192.168.35.63
Третья сеть: 192.168.35.64/27
Диапазон адресов: 192.168.35.65 — 192.168.35.94
Широковещательный адрес: 192.168.35.95
Четвертая сеть: 192.168.35.96/27
Диапазон адресов: 192.168.35.97 — 192.168.126
Широковещательный адрес: 192.168.35.127
По условию задачи мы можем выдать 3 подсети нашим физическим сетям, которые требуют 20 адресов каждая (в запасе останется 10 хостовых адресов), и остается одна сеть, которую мы можем отдать под иные нужды целиком или разбив на более мелкие подсети.

Действия в общем случае при необходимости разбиения адресного пространства на подсети:
1. Определяем, сколько подсетей нам потребуется.
2. Определяем, сколько хостов будет в каждой из подсетей.
3. Выбираем некоторую начальную сеть, деление которой мы и будем производить.
4. Расставляем требуемые сети в порядке убывания количества хостов в них.
5. Начинаем деление на подсети: сначала выделяем адреса для сети с наибольшим количеством хостов, после идем по списку, дробя адресное пространство на более мелкие части.

Для проверки этого алгоритма попробуем решить задачу из курса CCNA Exploration.

Для проектирования сети мы решили взять сеть класса В. Используем адресный блок 172.16.0.0/16. Нам требуется обеспечить адресами 7 сетей со следующими требованиями:

1st сеть содержит 512 хостов;
2nd сеть содержит 12 хостов;
3rd сеть содержит 28 хостов;
4th сеть содержит 6 хостов;
5th, 6th, 7th — сети типа «point-to-point», требуют по 2 адреса каждая.

Видим, что наибольшее количество хостов в подсети равно 512. Выделим адреса для этой сети.
Расчеты показывают, что мы должны оставить в хостовой части 10 бит, иначе нам не хватит адресного пространства ( 2^10-2=1022 — 510 адресов будут не использованы, но если взять меньшее количество бит, например, 9, то нам не хватит 2х адресов. Что ж, бывают и такие огорчения, но ничего не поделать).

Значит, получаем сети с длиной префикса /22. Из выданного нам блока таких сетей будет 32 (начальная длина префикса 16, мы используем под сетевые адреса еще 6 бит из хостовой части, следовательно, количество получаемых сетей 2^6=32):

172.16.0.0/22
172.16.4.0/22
172.16.8.0/22
172.16.12.0/22
172.16.16.0/22
. . . . . . . . . . .
172.16.252.0/22

Одну из этих сетей забираем для сети 1. Пусть это будет сеть 172.16.0.0/22. Остается еще 31 сеть, которую мы можем использовать по своему усмотрению.
Приступим к следующим подсетям. По количество хостов следующей у нас является сеть 3 — 28 требуемых адресов. Возьмем любую из тех оставшихся сетей, и разделим её. Допустим, возьмем сеть 172.16.4.0/22.
По аналогичному алгоритму: необходимо не менее 5 бит, значит, используем длину префикса /27. Снова получим 32 сети, но с маской 255.255.255.224:

172.16.4.0/27
172.16.4.32/27
172.16.4.64/27
172.16.4.96/27
.
172.16.7.224/27

Опять возьмем первый диапазон из списка и назначим его сети №3.

Далее сеть №2 — 12 хостов. Возьмем диапазон 172.16.4.32/27 и снова разделим. Необходимо оставить 4 бита под хосты. Получаем сети с длиной префикса /28:

172.16.4.32/28
172.16.4.48/28 — т.к. мы задействовали всего один дополнительный бит от хостовой части, то получили лишь две сети при делении. Но этого нам вполне достаточно.

Используем первый диапазон для сети №2, а второй разделим так, чтобы получить нужное количество хостовых адресов для 4й сети:

172.16.4.48/29 — отдаем сети №4
172.16.4.56/29 — это диапазон разобьем между сетями 5,6,7.

Здесь получилось интересно: всего для этих трех сетей требуется 2 адреса в каждой подсети. А это 2 бита в хостовой части. Но сеть 172.16.4.56/29 может быть разделена только на 2 подсети с длиной префикса /30. Что делать? Ничего страшного. Мы оставим эту сетку для каких-нибудь иных целей, а для решения последней части мы возьмем еще одну сеть /27, и разобьем её на множество сетей /30, а если точнее — на 8 таких сетей:

172.16.4.64/30
172.16.4.68/30
172.16.4.72/30
.
172.16.4.92/30

Первые три подсети мы отдадим соответственно 5,6 и 7 сетям.

В итоге мы выдали всем физическим сетям диапазоны адресов, которые содержат столько адресов, сколько нужно для данной сети, либо содержит минимально возможное количество неиспользованных хостовых адресов.

В запасе у нас осталось:

30 сетей с маской 255.255.252.0 (/22)
29 сетей с маской 255.255.255.224 (/27)
1 сеть с маской 255.255.255.248 (/29)
5 сетей с маской 255.255.255.252 (/30)

4 способа изменить маску подсети в Windows 10

Маски подсети используются для разделения IP-адресов на две разные части: одна из них сообщает вам адрес компьютера или устройства, а другая — сеть, к которой он принадлежит. Другими словами, маски подсетей используются для разделения сетей на подсети, чтобы любые данные, передаваемые по сети, могли правильно достигать места назначения. Вы задаетесь вопросом, как изменить маску подсети на ПК с Windows 10? Хотите узнать, как изменить маску подсети для всех компьютеров и устройств в локальной сети? Читайте дальше и узнайте

Прежде чем менять маску подсети ПК с Windows 10, вы должны знать, что такое IP-адреса и маски подсети, и как узнайть IP-адрес вашего компьютера с Windows 10.

На компьютере или устройстве Windows 10 вы можете изменить маску подсети, только если вы используете статический IP-адрес. Если это так, или если вы также хотите изменить свой IP-адрес и установить статический, прочитайте инструкции из первых трех способов в этом руководстве.

Если вы используете динамический IP-адрес, который автоматически генерируется службой DHCP на вашем маршрутизаторе, вы можете изменить только маску подсети из веб-интерфейса вашего маршрутизатора.

Следует также отметить, что для изменения маски подсети (и/или IP-адреса) в Windows 10 необходимо войти в систему с помощью учетная запись администратора.

1. Как изменить маску подсети в Windows 10, из приложения «Настройки»

Один из самых простых способов изменить маску подсети в Windows 10 предлагает приложение «Настройки». Запустите его и перейдите в категорию «Сеть и Интернет».

В разделе «Сеть и Интернет» выберите «Wi-Fi» или «Ethernet» на левой боковой панели, в зависимости от типа сетевого адаптера, для которого вы хотите изменить маску подсети. Затем в правой части окна нажмите или коснитесь соответствующего сетевого подключения.

На странице сетевого подключения прокрутите вниз, пока не дойдете до раздела настроек IP. Затем нажмите кнопку Изменить.

Откроется диалоговое окно «Изменить настройки IP», в котором можно изменить IP-адрес, маску подсети , шлюз и DNS-серверы, используемые выбранным сетевым подключением, как для протокола Интернета версии 4 (TCP / IPv4), так и для протокола Интернета. Версия 6 (TCP/IPv6) . Прокрутите до раздела IPv4 или IPv6, в зависимости от того, какую из них вы хотите настроить для маски новой подсети.

Параметр, определяющий маску подсети, — это длина префикса подсети , которая определяет размер подсети. Например, на приведенном ниже снимке экрана вы можете видеть, что для нашего протокола IPv4 сетевого подключения мы используем «длину префикса подсети», равную 24 ( количество битов в маске 1 ), что означает, что маска подсети 255.255.255.0.

Чтобы изменить маску подсети , необходимо изменить значение поля «Длина префикса подсети». Например, поскольку мы хотели иметь маску подсети 255.255.240.0, нам пришлось установить длину префикса равной 20. Если вам нужна помощь в расчете длины префикса для маски подсети, проверьте этот онлайн- калькулятор подсети IP.

Нажмите или коснитесь Сохранить, и ваша маска подсети будет немедленно изменена.

2. Как изменить маску подсети в Windows 10, из панели управления

Windows 10 по-прежнему включает старую панель управления , которая также позволяет вам изменять маску подсети вашего сетевого адаптера. Если вы предпочитаете использовать панель управления для этой задачи, откройте ее и нажмите или коснитесь ссылки «Просмотр состояния сети и задачи» в разделе «Сеть и Интернет».

В Центре управления сетями и общим доступом нажмите или коснитесь сетевого подключения, для которого вы хотите изменить маску подсети.

Предыдущее действие открывает окно состояния этого сетевого подключения. В нем нажмите кнопку Свойства.

В окне « Свойства» сетевого подключения выберите « Протокол Интернета версии 4 (TCP / IPv4)» или «Протокол Интернета версии 6 (TCP / IPv6)», в зависимости от маски подсети, которую вы хотите изменить. Если вы хотите изменить оба, повторите следующие шаги для каждого из них.

Если вы хотите изменить маску подсети, используемую для протокола Интернета версии 4 (TCP / IPv4) , в окне « Свойства» введите новую маску подсети в поле с тем же именем.

Например, мы хотели изменить нашу маску подсети на 255.255.240.0, как вы можете видеть на следующем скриншоте.

Закончив вносить все изменения, нажмите или нажмите « ОК», а затем закройте все открытые окна. Новая маска подсети, которую вы установили, запущена и работает.

3. Как изменить маску подсети в Windows 10, используя PowerShell

Если вы предпочитаете использовать среду командной строки, вы также можете изменить маску подсети в Windows 10 с помощью PowerShell. Откройте PowerShell от имени администратора и выполните следующую команду: Get-NetAdapter -physical . Эта команда показывает все сетевые адаптеры, установленные на вашем компьютере с Windows 10. Определите тот, для которого вы хотите изменить маску подсети, и запишите его значение . Это индексный номер интерфейса, который можно использовать для выбора сетевого адаптера в следующей команде PowerShell.

Чтобы изменить маску подсети, выполните следующую команду: Set-NetIPAddress -InterfaceIndex [значение ifIndex] -PrefixLength [длина префикса подсети] . Замените [ifIndex value] значением индекса интерфейса, которое вы указали в предыдущей команде, и замените [длина префикса подсети] на значение требуемой длины нового префикса подсети.

Например, мы хотели установить маску подсети 255.255.255.0, поэтому мы запустили эту команду: Set-NetIPAddress -InterfaceIndex 7 -PrefixLength 24 .

Новая маска подсети применяется мгновенно, поэтому вы можете закрыть PowerShell.

4. Как изменить маску подсети с интерфейса маршрутизатора, в домашней сети с DHCP

Если вы используете DHCP для автоматического назначения IP-адресов компьютерам и устройствам в вашем доме, вы можете изменить маску подсети для всех из них с помощью интерфейса администрирования вашего маршрутизатора. Используйте веб-браузер на вашем компьютере для доступа к веб-интерфейсу маршрутизатора. Чтобы сделать это, вы должны перейти к адрес маршрутизатора и войдите под своей учетной записью и паролем. На большинстве маршрутизаторов это 192.168.0.1 или 192.168.1.1, но они могут отличаться.

В интерфейсе веб-администратора маршрутизатора найдите категорию расширенных настроек под названием LAN . В нем перейдите в раздел или вкладку «Настройки IP- адреса локальной сети» и измените значение маски подсети на желаемое. Нажмите или коснитесь Применить, Сохранить или ОК. После этого новая маска подсети применяется ко всем компьютерам и устройствам в вашей сети, которые используют автоматические IP-адреса. Обратите внимание, что вашему маршрутизатору может потребоваться перезагрузка, чтобы применить это изменение.

Источник: softaltair.ru

Добавить комментарий